III B.Tech - I Semester - Regular/Supplementary Examinations October 2019

DESIGN AND DRAWING OF CONCRETE STRUCTURES - I (CIVIL ENGINEERING)

Duration: 3 hours
Max. Marks: 70
Use of IS:456-2000 and design charts from SP-16 Charts allowed. Data not given but found necessary may be assumed suitably

PART - A

Answer any ONE question.
$1 \times 28=28 \mathrm{M}$

1. Design a R.C. slab for a room measuring 4 m X 6 m in size (Clear Dimensions). The slab is simply supported on all the four edges on 300 mm wide masonry wall, with corners held down and carries a superimposed load of $3.1 \mathrm{kN} / \mathrm{m}^{2}$, inclusive of floor finishes etc. Use M20 mix, Fe 415 steel. Sketch the reinforcement details.
2. A reinforced column of 6 m effective height is subjected to a working axial live load of 600 kN and bending moment of $300 \mathrm{kN}-\mathrm{m}$. Design a column by limit state design with width not exceeding 300 mm using M20 concrete and HYSD Fe 415 bars. Sketch the reinforcement details. 28 M

PART-B

Answer any THREE questions. All questions carry equal marks.

$$
3 \times 14=42 \mathrm{M}
$$

3. Compute the maximum stress developed in concrete and steel in a rectangular beam of cross-section 200 mm X 400 mm with effective depth as 365 mm . It is reinforced with 4 No. 16 mm dia M.S bars on tension side. The beam is simply supported over a span of 6 m and carries a load of $7000 \mathrm{~N} / \mathrm{m}$ inclusive of self weight. Concrete used is M20.
4. a) Draw and explain stress- strain curves for concrete and
deformed bars.
b) Show that the limiting depth of neutral axis for a rectangular cross section reinforced with Fe 415 grade steel is 0.48 d .
5. Determine the reinforcement required for a rectangular beam section with the following data:
Width of the section $=300 \mathrm{~mm}$;
Depth of the section $=550 \mathrm{~mm}$,
Factored Bending Moment= $80 \mathrm{kN}-\mathrm{m}$;
Factored torsional moment $=40 \mathrm{kN}-\mathrm{m}$
Factored shear force $=70 \mathrm{kN}$. Use M20 grade concrete and Fe415 grade steel.

14 M
6. Design a short circular column 3 m long to carry an axial load of 250 kN if both ends of the column are fully restrained using i) Lateral ties and ii) helical steel Use M20 grade concrete and Fe 415 grade steel.
7. Design a slab simply supported on all the four edges for a room $6 \mathrm{~m} \times 3 \mathrm{~m}$ clear in size. The superimposed working load is $3.0 \mathrm{kN} / \mathrm{m}^{2}$. Use M20 grade concrete and Fe 415 grade steel. Assume floor finish.

14 M

